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ABSTRACT

Although pedestrian detection has made significant progress with
the help of deep convolution neural networks, it is still a challenging
problem to detect occluded pedestrians since the occluded ones can
not provide sufficient information for classification and regression.
In this paper, we propose a novel Hierarchical Graph Pedestrian
Detector (HGPD), which integrates semantic and spatial relation
information to construct two graphs named intra-proposal graph
and inter-proposal graph, without relying on extra cues w.r.t visible
regions. In order to capture the occlusion patterns and enhance
features from visible regions, the intra-proposal graph considers
body parts as nodes and assigns corresponding edge weights based
on semantic relations between body parts. On the other hand, the
inter-proposal graph adopts spatial relations between neighbour-
ing proposals to provide additional proposal-wise context infor-
mation for each proposal, which alleviates the lack of information
caused by occlusion. We conduct extensive experiments on stan-
dard benchmarks of CityPersons and Caltech to demonstrate the
effectiveness of our method. On CityPersons, our approach out-
performs the baseline method by a large margin of 5.24pp on the
heavy occlusion set, and surpasses all previous methods; on Caltech,
we establish a new state of the art of 3.78% MR. Code is available
at https://github.com/ligang-cs/PedestrianDetection-HGPD.
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1 INTRODUCTION

Pedestrian detection is a popular topic in computer vision. On
the one hand, it has extensive applications, such as autonomous
driving, video surveillance, and robotics. On the other hand, it also
serves as a fundamental step for some other vision-based tasks,
e.g. person re-identification [26, 39], pose estimation [10, 19], etc.
Recently, significant improvements have been achieved with the
development of deep convolution neural networks. Although some
state-of-the-art detectors can provide reasonable detection results
for non-occluded or partially occluded pedestrians, the performance
for heavily occluded pedestrians is still far from satisfactory.

Occlusion occurs frequently in real-world applications, and thus
it is an important problem to solve. Though quite some efforts have
been made for handling occlusion, it is still far from being solved.
By analyzing the occlusion issue, we assume the difficulty mainly
comes from the following two reasons: (1) lack of human body
information from invisible parts; (2) background noise inside the
detection window of occluded pedestrians. We show one example
in Figure 1.

To improve the model’s discrimination ability for occluded pedes-
trians, an intuitive way is to enhance human body features from
visible regions and suppress noisy features from occluded regions.
To this end, we need to predict visible parts and then perform
feature aggregation or re-weighting based on the prediction. For
example, OR-CNN [37] divides each proposal into five pre-defined
parts and aggregates features from these parts with predicted vis-
ibility scores; MGAN [21] produces a pixel-wise attention map
based on visible regions, and then gives higher attention weights
to features from visible regions; Zhang et al. [38] propose to use
the predicted visible box or part detection results as guidance to
conduct channel-wise feature selection. All of the above works
rely on either visible box annotations as additional supervision at
training time or an external body part detector. However, visible
boxes are not provided on some large-scale pedestrian datasets,
such as EuroCity Persons [1] and NightOwls [18], as they require
extensive human labor; running an additional body part detector is
computationally expensive at inference.
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Figure 1: Illustration of our proposed hierarchical graph.

To overcome the above limitations, in this work we aim to model
occlusion patterns and enhance features for occluded pedestrians
without relying on extra annotations or cues. In order to diminish
the effects of noisy features inside occluded pedestrian windows,
we build a graph for each proposal to model occlusion patterns,
where each body part acts as one node and edges linked to the
node are defined by the affinity between the node and the full
body. The basic assumption is that the full body has a stronger
affinity to visible parts than to occluded parts. In this way, the
occlusion pattern is modeled via an intra-proposal graph. Given
this occlusion-aware graph, those features from the visible parts
are expected to contribute more than those from the invisible parts
during feature aggregation. On the other hand, to alleviate weak
visual cues of occluded pedestrians, we create the inter-proposal
graph, which views each proposal as one node and defines each
edge weight based on the spatial relations between two proposals.
We consider, for one occluded pedestrian proposal, its neighboring
proposals are complementary, as they might cover some visible
parts of the target person. Given this spatial-aware graph, those
neighboring proposals, which have larger overlaps with the target
proposal, would contribute more to the final aggregated features.

Our proposed intra- and inter-proposal graphs can be added
on top of any proposal-based detector with small computation
overhead.

Our contributions are summarized as follows:

e We propose an intra-proposal graph to model occlusion pat-
terns. Through the message passing in the graph, meaningful
information is highlighted, meanwhile, noisy features can
be suppressed.

e We build an inter-proposal graph to provide complementary
visual cues for occluded pedestrian proposals. It takes spa-
tial relationships between proposals into consideration and
alleviates the lack of information caused by occlusion.

e To validate the effectiveness of our method, we conduct
extensive experiments on CityPersons and Caltech datasets,
and build the new state of the art on both of them.

2 RELATED WORK

In this work, we address the problem of occluded pedestrian de-
tection using graph neural networks. Therefore in this section, we
discuss the three lines of works related to this paper: pedestrian de-
tection with CNN, occluded pedestrian detection, and graph neural
networks.

2.1 Pedestrian Detection with CNN

In recent years, pedestrian detection is dominated by CNN-based
methods [34, 35]. These CNN-based pedestrian detectors can be
divided into two categories: one-stage and two-stage detectors. One-
stage detectors [11, 15, 16, 20, 23] aim to achieve a trade-off between
speed and accuracy. Among them, ALFNet [15] and GDFL [11]
follow the framework of SSD [14] and directly predict the object
category and anchor box offsets, based on multi-level features.
ALFNet [15] uses multi-step refinement and a strict classification
criterion to provide accurate detection. And GDFL [11] proposes
a scale-aware pedestrian attention module to enhance features.
Though one-stage detectors have faster inference speed, they rely
on data augmentation and take more training time to converge.

In contrast, more works [2, 6-8, 31, 37, 38] are based on two-
stage detectors. Faster R-CNN [24] is a typical two-stage detector,
which achieves state-of-the-art performance for object detection. It
first generates proposals by region proposal network (RPN), and
then crops features of each proposal to conduct classification and
regression again. Many recent pedestrian detectors are built on top
of it. For example, adapted Faster R-CNN [36] improves Faster R-
CNN to better handle the canonical problem of pedestrian detection;
AR-Ped [2] introduces an encoder-decoder module for the RPN
stage and improves precision progressively. In this paper, we also
use Faster R-CNN as the baseline and improve it via employing
graph neural networks.

2.2 Occluded Pedestrian Detection

Occlusion is a challenging problem in pedestrian detection, and it
has been widely studied in the last few years. Zhang et al. [37] and
Wang et al. [31] handle the occlusion by designing the novel loss for-
mulation. Specifically, aggregation loss is proposed in OR-CNN [37],
enforcing proposals to locate compactly around the corresponding
person; RepLoss [31] designs a repulsion loss to prevent proposals
from shifting to surrounding persons. Since occlusion happens less
frequently at the head region, some works learn the relation be-
tween the head and the full body. JointDet [7] designs a head-body
relationship discriminating module to recall some suppressed pedes-
trians. PedHunter [6] inserts a parallel branch in R-CNN stage to
conduct head segmentation. Besides, some other methods [21, 38]
exploit attention mechanisms to enhance the features from visible
regions. Zhang et al. [38] introduce the channel-wise attention to
increase the weights of features from visible body parts. And Xie
et al. [21] propose the spatial-wise attention to suppress noisy fea-
tures from the background. In contrast, in this work we propose
to build intra- and inter-proposal graphs to enhance features. A
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Figure 2: Structure of hierarchical Graph Pedestrian Detector. In the RPN stage, two-step regression is used to provide high-
quality proposals, and Feature Fusion Module (FFM) aggregates features from conv4_3 and conv5_3 as input features for
second-stage regression (RPN2). In the R-CNN stage, we feed features from holistic proposals into Inter-proposal Graph, mean-
while, we divide each proposal into several body parts and send features from local parts into Intra-proposal Graph. Finally,
we fuse output features from intra- and inter-proposal graphs to perform classification. And holistic features before the graph

are selected to perform the regression task.

similar attempt is found in [32], where graph is also used to ad-
dress the occlusion issue. However, our method is substantially
different. [32] only creates a graph within the proposal and aims to
learn spatial co-occurrence among body parts. While our method
considers not only semantic relations among body parts but also
spatial relations among proposals. Moreover, we use graph neural
networks to enhance the features by focusing more on visible re-
gions and aggregating complementary features from neighboring
proposals.

2.3 Graph Neural Networks (GNN)

GNN was proposed in [25], then it is extended to CNN. Bruna et
al. [4] propose two constructions of graph convolutional networks:
the one is based on spatial convolution, the other is based on the
Laplician spectrum transformation. As GNN can effectively capture
the relation of data and make information propagation between
nodes explainable, it has been widely applied to various tasks. In
person re-id task, Shen et al. [26] construct a graph to represent the
pairwise relationships between probe-gallery pairs, and it not only
focuses on the target probe-gallery pair but also takes others pairs
into consideration. In person search task, Yan et al. [33] introduce
the context graph, which takes instance pairs as nodes and places
the target pair at the center of the graph, so context information
can be passed to the target pair through the graph linkage. In the
action recognition task, Shi et al. [27] propose to learn the topology
of the graph in a data-driven method, and introduce hierarchical
GCNs to model the first-order and second-order simultaneously.

3 METHODS

In this section, we first describe the overall framework of our pro-
posed Hierarchical Graph Pedestrian Detector (HGPD) in Sec. 3.1,
then detail the sub-module in Sec. 3.2, 3.3, and 3.4.

3.1 Overview

In this work, we adopt Faster R-CNN [24] as our baseline, and as
in [12, 21], we choose VGG-16 [28] as the backbone. The overall
network structure of HGPD is shown in Figure 2. Based on vanilla
Faster R-CNN, we propose the hierarchical graph (intra- and inter-
proposal graph) and two-step regression. We place the hierarchical
graph at the R-CNN stage, right after the Rol pooling layer, and our
framework is two-stream. For the inter-proposal stream, we take
features of proposals as input, and enhance each proposal by aggre-
gating features from its neighboring ones. For the intra-proposal
stream, we feed features from each body part into the graph, then
the graph outputs enhanced local features. Finally, we combine
features enhanced by each graph for classification. Considering ag-
gregating neighboring features might damage position information
of original features, we use features before the graph to perform
bounding box regression. And two-step regression is used in the
RPN stage to provide high-quality ! proposals for the R-CNN.

3.2 Intra-proposal Graph

The part-based method for pedestrian detection has been explored
in OR-CNN [37], which divides the full body into five body parts
based on prior structure information of the human body. However,
we consider pedestrians with small scale often occur in real-world
scenes. If dividing the small scale pedestrian into five parts, each
part only covers limited pixels and can not provide accurate fea-
tures. So the number of human parts (noted as N) is set to be three
in this work. Then we conduct the Rol pooling operation on the
holistic body and every body part. Followed by fully connected
layers, pooled features maps (512 X 7 X 7) are converted into a
feature vector (f), whose dimension is 1024. To model occlusion

ISpecifically, high-quality represents proposals with accurate localization.
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Figure 3: Example of the intra-proposal graph. The region
proposal is from the CityPersons validation set. The graph
takes features from the full body and body parts as input.
There are two parallel modules: Self-attention and Inter-
affinity. Self-attention predicts the edge weight in Eq. 2;
Inter-affinity calculates the edge weight in Eq. 4. Finally, out-
puts of two methods are fused to generate the adjacent ma-
trix Aintra, as in Eq. 5.

patterns, we propose the intra-proposal graph, where the adjacent
matrix can reveal occlusion level of each body part. Formally, the
intra-proposal graph is noted as G = {7V, &}, where V represents
vertices corresponding to N body parts, and & refers to a set of
edges . The adjacent matrix is noted as Ajnsrq. We calculate the
output of GNN as:

Xp = AintraXbW, (1)
where X}, € refers to input feature vectors of N body parts,
Aintra € RN*N is the normalized adjacent matrix and W refers to
learning parameters. The adjacent matrix is normalized by: Aintra =
D7 1A;ntra, where D denotes the degree matrix. Then we describe
how to create the adjacent matrix based on semantic relations.
First, we predict the visibility score for each human part in a self-
attention manner. Specifically, a series of two fully connected layers
followed by a sigmoid function, is used to generate the visibility
score (p;) for the i-th body part. The higher score indicates the
larger visibility ratio. The edge weight (Q; j) between the i-th and
Jj-th part is calculated by:

RNXd

Q;j= aReN (2

In this way, the edge between two visible parts is assigned with
a high weight, meanwhile, edges linked to the occluded part are
assigned lower weights. Without supervision on visible regions,
the accuracy of visibility score prediction is not guaranteed, so we
introduce the additional guidance as complementary. The basic
assumption is that features from full body have a stronger affinity
with that from visible parts, than that from occluded parts. Based
on this assumption, we use the affinity between local-part features
and holistic features to represent the occlusion level of the part.
Specifically, we use "Scaled Dot-Product Attention" [30] to measure

affinity:

qi = dot(Wkfp, Wofi), 3
where Wi and Wy project original features into a subspace to mea-
sure how well they match. The feature dimension after projection is
dy., which is set to 64. The resulting value (g;) reflects the affinity be-
tween the i-th part (f;) and the holistic body (f3,). Using inter-affinity
guidance, we define the edge weight ¢; ; as:

Bij = qj- (4)
Combining the above two methods: self-attention and inter-affinity,
the occlusion patterns can be modeled more accurately. The com-
bined adjacent matrix Ajntrq (i, j) is defined as:

Aintra(i, j) = \[Qij * ¢ij, (5

and an example is shown in Figure 3.

We also analyze the advantage of using the graph to model
body parts rather than directly concatenating features of them. We
assume the biggest advantage is that GNN can interweave all parts
and provide rich supervision for feature learning. As elements of
the graph are connected with each other, we describe the procedure
of information propagation for concatenation in Eq. 6 and for GNN
in Eq. 7.

fi = pr * I, (6)
fI; = A(k, 1) «t1+A(k, 2) fo+- - -+ A(k, k) i+ - -+A(k, N)=fn, (7)
where f; represents the feature vector of the k-th body part, py
is the predicted visibility score, A(k, 1) refers to element in the
k-th row and 1st column of the adjacent matrix, and f/; represents
enhanced features. We calculate the gradients of error loss, w.r.t
concatenation and GNN, respectively. For concatenation, it can be
written as follows:

dloss 1 OJloss
— =1[0,0,---, — % o0, 0], ®)
o, P ofk
while for graph neural networks, it is:
dloss 1 . dloss 1 . dloss
of Ak of, “Ak2)  of,
K k k (9)
1 . dloss 1 . dloss
A(k,k)  ofy Ak N) ofy

As Eq. 8 and 9 demonstrate, with GNN, gradients of different parts
are highly correlated, so that features are updated in a more coher-
ent way, rather than separately. The weight assigned to each part
not only depends on local part features, but also takes semantic
relations between body parts into consideration. Without the help
of visibility annotations, semantic relation information provides
a potential cue for modeling occlusion patterns. We also compare
performance with and without GNN in ablation study (Table 2).

3.3 Inter-proposal Graph

Because occluded pedestrians only provide weak visual cues, in-
sufficient information makes them more difficult to be detected.
Specifically, for some detection proposals of occluded pedestrians,
though they are highly-overlapped with the ground truth, they
derive low classification scores, as the majority of the overlapped
regions may be occluded regions and provide meaningless infor-
mation. However, we observe that some neighboring proposals
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Figure 4: Illustration of aggregating output features from
the intra- and inter-proposal graphs. The resulting features
(X,15) are used to perform classification.

may cover other visible regions of the ground truth, as shown in
Figure 1. Given this, we construct the inter-proposal graph to create
connections between neighbouring proposals. In the graph, we take
region proposals as vertices, and define the edge weight based on
spatial relationships. It is intuitive that spatially closer proposals
contain more related features and should be assigned higher edge
weights. We select Intersection over Union (IoU) as the metric to
measure spatial relations. The propagation of the inter-proposal
graph is:

Xp = AinterXpW, (10)
where X, refers to input features from proposals, W refers to learn-
ing parameters and Ainter represents the normalized adjacent ma-
trix. And the derivation of the adjacent matrix is as follows:

ToU(m;, mj) ifi#j (1)
0 otherwise,

Ainter (i, j) = {

where m;, m; refers to the i-th,j-th proposal, and IoU(m;j, m;) =
% We set Ajnrer (k, k) to 0 to avoid self-enhancing. Finally, we
combine original features X, with enhanced neighboring features
Xp as: N N

Xo = AXo + (1 =X, (12)
where A represents the weighting parameter that balances neigh-
bouring features and original features, and A is set to 0.9 empirically.
Finally, we fuse output features from intra- and inter-proposal graph
to perform classification, and the procedure of the feature fusion is
shown in Figure 4. Original proposal features (X,) are enhanced by
their neighboring features (Xp), and resulting features are noted as

)Z,. Then )?0 is combined with enhanced local features va-

3.4 Two-step Regression

In this work, we adopt Faster R-CNN [24] as our baseline. Because
of the huge variance of pedestrian scale, we observe that some
ground truth boxes are assigned low-quality proposals, some of
which only cover the partial person body and contain too many
background clutters. Inaccurate localization would make our part-
based graph meaningless, so we introduce two-step regression to
provide high-quality proposals for the hierarchical graphs. More-
over, high-quality proposals can also reduce false detections of
adjacent overlapping pedestrians.

conv4 3

3x3 conv,
256

convs 3 3x3 convy, 3x3 conv, 3x3 conv,
= 256 256 512

Figure 5: Structure of feature fusion module.

We perform two-step regression in the RPN stage. As in [36], we
remove the fourth max-pooling layer from VGG-16, so the stride
of conv5 is reduced to 8, which provides higher resolution feature
maps for RPN and helps to detect small objects. The first regression
is performed on the conv5 layer and outputs regressed anchors for
the following step. With these well-initialized anchors as inputs,
the second regression can generate more high-quality proposals.
To make use of precise position information in shallow layers [13],
we combine features from conv4 and conv5 via the feature fusion
module (FFM), and the structure of FFM is shown in Figure 5. Fi-
nally, we perform the classification and second regression on fused
features to derive more accurate localization and object scores.

The whole network can be trained end-to-end by minimizing
the following loss function:

_grpn rpn rpn renn renn
L= Llocl + Llocz + aLcls + Lloc + Lcls > (13)
where Llrf Cnl, Llrf C'; are the first and second regression losses in the

RPN stage. And other loss terms are the same with vanilla Faster
R-CNN [24]. We set a = 2 to balance the loss terms.

4 EXPERIMENTS

In this section, we will give a brief description of the datasets used
for experiments, followed by an introduction to the evaluation
metrics. Then some implementation details are presented. After
that, extensive ablation studies and comparisons with the state-of-
the-art methods are presented.

4.1 Datasets

CityPersons. The CityPersons dataset [36] is built upon Cityscapes
and provides accurate pedestrian annotations. It has 2975, 500, and
1525 images for train, validation, and test subsets, respectively. The
images of CityPersons are collected from 27 cities, so it covers di-
verse environments. And the ratio of fully visible pedestrians in
CityPersons is less than 30%, which makes CityPersons a challeng-
ing dataset and suitable for researching on occlusion cases.
Caltech. Caltech [9] is another widely used pedestrian dataset,
which is approximately 10 hours of 30 Hz video, taken from a
vehicle driving in an urban environment. It consists of 11 sets of
videos, the first 6 sets of which are training sets and the last 5 sets
are testing sets. Zhang et al. [34] provide refined annotations for
both training and test sets, which correct several errors in original
annotations and improve localization accuracy of bounding boxes.
In our work, we conduct all experiments related to Caltech on the
new annotations.



Table 1: Ablation study on CityPersons validation set. Num-
bers are log-average miss rates (lower number indicates bet-
ter performance).

Table 2: The effects of intra-proposal graph.

wio graph intra—[')ropos.al graph . R HO
self-attention  inter-affinity
13.46  56.98
v 13.98  55.15
v 1236 54.47
v v 12.33  53.19

. Two-step Intra- Inter-
Baseline ) proposal  proposal R HO

Regression Graph Graph

v 1346  56.98

v 1250 55.58

v 1233 53.19

v 1258 53.59

v v 1182 52.87

v v v 1127 5174

Overall Improvement +2.19 +5.24

4.2 Evaluation metric

Following [9], the log-average miss rate (noted as MR) is used in
our work. It is calculated by averaging miss rates over 9 points
uniformly sampled from [1072, 10°] false positive per image (FPPI).
On the CityPersons validation set and Caltech test set, we report
results across two different occlusion subsets: Reasonable (R) and
Heavy Occlusion (HO). The visibility ratio in R is larger than 65%,
and the visibility ratio in HO ranges from 20% to 65%. In R and HO,
the height of pedestrians is at least 50 pixels. Better results on HO
are considered as stronger evidence of better occlusion handling.
On the CityPersons test set, besides R and HO, we also report
results on the All subset. All contains pedestrians, whose visibility
ratio is larger than 20% and height is at least 20 pixels. Besides, to
evaluate the quality of region proposals, we introduce the average
recall (noted as AR), which is calculated by averaging the recalls
across IoU thresholds from 0.5 to 0.95 with a step of 0.05.

4.3 Implementation

We implement our method with Pytorch [22] and mmdetection [5].
No data augmentation is used except standard horizontal image
flipping. SGD is selected as the back-propagation algorithm.
CityPersons. The model is trained on one GTX 2080Ti GPU with
a batch size of 2, for 14 epochs. The learning rate is set to 0.02 and
reduced to 0.002 after 10 epochs.

Caltech. As in [15, 16, 31, 37], we start with the model pretrained
on CityPersons, then finetune the model on the Caltech dataset for
another 6 epochs. For the first 4 epochs, the learning rate is set to
0.02 and then reduced to 0.002 for the last two epochs.

4.4 Ablation Study

To better understand our model, we conduct ablation experiments
on the CityPersons validation set. The R set is used as the training
set for these experiments.

Component-wise Analysis. To demonstrate the effectiveness
of our hierarchical graph pedestrian detector, a comprehensive
component-wise analysis is performed in which different compo-
nents are added on top of a strong baseline method step by step. The
results are reported in Table 1. As Table 1 shows, both of intra- and
inter-proposal graphs dramatically reduce the error on the HO set.

Table 3: Ablation study on the number of human parts. 2 or
3 parts mean uniformly cropping the full body into 2 or 3
parts vertically. 5 parts mean cropping the full body into 3
parts vertically and 2 parts horizontally.

# number R HO R+HO
2 11.96 53.59 30.92
3 12.33  53.19 31.05
5 12.49  55.67 31.65

Specifically, intra-proposal graph brings an absolute gain of 3.79pp
(pp represents percentage points), and inter-proposal graph also
outperforms the baseline with 3.39pp, demonstrating the proposed
hierarchical graph is useful for addressing occlusion. With the help
of two-step regression, more accurate region proposals are sent into
the hierarchical graph. Finally, HGPD achieves log-average miss
rates of 11.27% on the R set and 51.74% on the HO set, achieving a
total improvement to the baseline of 2.19% and 5.24% respectively.
These results demonstrate the proposed method effectively handles
different levels of occlusion.

The effects of intra-proposal graph. To model accurate occlu-
sion patterns, we propose two options to define the edge weights,
namely self-attention and inter-affinity. From Table 2, when only
self-attention is used as edge weights, intra-proposal graph brings
gains of 1.10pp on the R set and 2.51pp on the HO set; when
we involve inter-affinity as an additional term for edge weights,
we achieve larger improvements, i.e. 1.13pp and 3.79pp on the R
and HO sets respectively. These results validate that inter-affinity
guidance can help to better model occlusion patterns. We also con-
duct experiments to verify the effect of using the intra-proposal
graph. For comparison, we introduce another reference method
without graph, for which features from body parts are multiplied
with corresponding visibility scores, and simply concatenated for
classification. The results in Table 2 indicate that the concatena-
tion operation without graph brings negligible improvements on
the HO set and it even drops by 0.52pp on the R set. Compared
to the simple concatenation operation, our intra-proposal graph
integrates the features from different body parts in a more effective
way.

Number of body parts. Table 3 shows the performance on dif-
ferent number of body parts. When we divide the full body into 2
parts (top and bottom half), it achieves the best performance on
the R set, as the occlusion ratio on the R set is lower than 35%,
so 2 parts can handle all occlusion patterns on the R set. But the



Table 4: The effects of two-step regression.

| RPN R-CNN | ARjgg  ARspo  AR1000

648 697 712

v 69.6 728 737
v 722 730 732

Table 5: The effects of decoupling two tasks.

’ sibling  separate ‘ R HO
v 1244 5336
v 11.27 5174

best performance on the HO set is obtained under the number of 3,
where more diverse occlusion patterns can be modeled. The result
also indicates more body parts, e.g. 5, can not bring inconsistent
improvements. We divide the full body into 3 parts in the following
experiments.

The effects of two-step regression. Table 4 shows the quality
of proposals when we place two-step regression at different loca-
tions of Faster R-CNN. ARjgo, AR300 and ARjqqo refer to average
recalls for top 100,300 and 1000 proposals in each image. Two-step
regression can be placed at either the RPN or R-CNN stage, and
we conduct experiments to compare these two choices. As Table 4
indicates, no matter where to place, two-step regression can bring
significant improvements on AR. In practice, we usually use a large
number of region proposals for Faster R-CNN (i.e. 1000), so AR1000
is a better indicator. Performing two-step regression in the RPN
stage achieves the highest ARjgo9 of 73.7%, and outperforms the
baseline and placing it at R-CNN by 2.5pp, 0.5pp respectively.
Effects of decoupling classification and regression tasks. We
assume that combining local features and neighboring features
would be harmful to the localization task, since the localization is
sensitive to the boundary features [29]. So we propose to select
features before the hierarchical graph to perform bounding box
regression, which is noted as the separate head. And performing
both classification and regression on the output features from hier-
archical graphs is noted as sibling head. The comparison in Table 5
demonstrates decoupling two tasks works better, and it outperforms
the counterpart by 1.17pp/1.61pp on the R/HO set.

4.5 Comparison on CityPersons

We compare our method on the CityPersons validation with state-
of-the-art methods in Table 6. It is noted that existing pedestrian
detectors employ different subsets of training samples, which dif-
fer in occlusion level, and input scales, which highly affect the
performance. Considering fairness, we make comparisons at differ-
ent settings in terms of training subset and input scale. Based on
whether visible box annotations (VBB) are used at training time,
pedestrian detectors are divided into two groups, namely VBB-free
and VBB-based methods.

First, we compare our method with VBB-free methods, including
ATT+part [38], RepLoss [31], adaptive-NMS [12], CSP [16], and
ALFNet [15]. From Table 6(a), we have the following observations:

Table 6: Comparisons of different methods on the CityPer-
sons validation set. Numbers are log-average miss rates
(lower is better). The scale column indicates the upsampling
factor of input images. Bold indicates the best results. We
separate VBB-free and VBB-based methods in two subtables.

(a) Comparison of VBB-free methods
Methods | Visibility | Scale | R HO
ATT+part [38][CVPR18] > 65% 1x 16.0  56.7

RepLoss [31][CVPR18] > 65% 1x 13.2  56.9
AdapNMS [12][CVPR19] | > 65% 1x | 119 552

HGPD(Ours) > 65% 1x | 113 517
ALFNet [15] [ECCV18] > 0% 1x | 120 520
CSP [16] [CVPR19] > 0% 1x | 110 493
HGPD(Ours) > 0% 1x 115 413

RepLoss [31] [CVPR18]
AdapNMS [12] [CVPR19]
HGPD(Ours)

> 65% 13x | 11.5 553
> 65% 1.3x | 10.8 54.0
> 65% 1.3x | 10.7 50.9

(b) Comparison of VBB-based methods

] Methods | Visibility | Scale | R HO
MGAN [21] [ICCV19] | >65% | 1x | 115 517
HGPD(Ours) >65% | 1x | 113 517
MGAN [21] [ICCV19] > 0% 1x | 113 420
HGPD(Ours) > 0% 1x 115 41.3

OR-CNN [37] [ECCV138]
MGAN [21] [ICCV19]
HGPD(Ours)
Bi-box [41] [ECCV18]
A+DT [40] [ICCV19]
HGPD(Ours)

> 50% 1x 12.8  55.7
> 50% 1x 10.8 46.7
> 50% 1x 11.5 45.9

> 30% 13x | 11.2 442
> 30% 13x | 11.1 443
> 30% 1.3x | 10.9 40.9

(1) Our method outperforms top competitors by a large margin
(more than 3pp) on the HO set and achieves comparable perfor-
mance to the second best one (CSP) on the R set. (2) Our HGPD
also consistently outperforms those methods, which are designed
for occlusion handling, including RepLoss and Adaptive-NMS, on
both R and HO. With a 1x input scale and R training set, our
method achieves log-average miss rates of 11.3% and 51.7% on the
R and HO sets, surpassing RepLoss and Adaptive-NMS. (3) Besides,
compared with one-stage detectors (ALFNet and CSP), our method
outperforms both of them on the HO set by a large margin (~ 8pp).

Furthermore, we compare our HGPD with VBB-based meth-
ods in Table 6(b). Though our method uses less supervision in-
formation, it still achieves the best performance on the HO set.
MGAN [21] is a strong competitor, which uses visible regions to
generate spatial-wise attention. We conduct comprehensive compar-
isons with MGAN, specifically we use three training sets, including
visibility ratio > 65%, > 50% and > 0%. With each training set, our
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Figure 6: Visualization of detection results from baseline
(top row) and our method (bottom row). The results are col-
lected at FPPI=0.1. Our method shows fewer false negative
detections for occlusion.

HGPD outperforms MGAN on HO; while using training data with
visibility > 65%, our HGPD surpasses MGAN by 0.23pp on the R
set; when we use a 1.3x input scale and more occluded training
data (visibility > 30%), our HGPD achieves the best performance
on the HO set: a log-average miss rate of 40.9%, outperforming
Bi-box [41] and FRCN+A+DT [40].

To summarize, our HGPD builds a new state of the art on the
HO set (40.9% MR), and also yields competitive results on the R
set (10.7% MR). Qualitative results on the CityPersons validation
set are shown in Figure 6. As the detection examples for occluded
pedestrians indicate, our method robustly handles occlusion and
yields higher recall. Finally, we send our detection predictions on
the Citypersons test set to the evaluation server [36], and the results
are shown in Table 7.

4.6 Comparison on Caltech

Here, we compare our HGPD with state-of-the-art methods on the
Caltech dataset. Firstly, we train the HGPD with original image scale
(640x480), and only use standard horizontal image flipping as data
augmentation. As shown in Table 8, our HGPD achieves the best
performance of 32.26% MR on the HO set, and it outperforms the
second-best method CSP [16] with 0.17pp. It is worth mentioning,
OR-CNN [37] and RepLoss [31] use the 2x image scale as input, and
ALFNet, CSP also utilize random crop as extra data augmentation.
To reduce the impact of input size for a fair comparison, we use
multi-scale test strategy (noted as HGPD*), and obtain the state-of-
the-art miss rates of 3.78% on the R set and 32.26% on the HO set.
AR-Ped [2] is a strong competitor, and our HGPD outperforms it
with absolute gains of 0.58pp and 16.54pp on R and HO sets. Our

Table 7: State-of-the-art comparison on CityPersons test set.

Methods ‘ Reference ‘ R ‘ HO ‘ All ‘
Adaptive-FRCN [36] CVPR17 12.97 | 50.47 | 43.86
RepLoss [31] CVPR18 11.48 | 52.59 | 39.17
OR-CNN [37] ECCV18 11.32 | 51.43 | 40.19
Adaptive-NMS [12] | CVPR19 | 11.40 | 46.99 | 38.89
MGAN [21] ICCV19 9.29 | 40.97 | 38.86
HGPD(Ours) - 10.17 | 38.65 | 38.24

Table 8: Comparison with state-of-the-art methods on the
Caltech dataset. All results are evaluated on the new anno-
tations provided by [34].

Methods ‘ Reference ‘ R ‘ HO ‘
SDS-RCNN [3] ICCV17 | 6.44 | 42.56
HyperLearner [17] | CVPR17 5.5 48.7
ALFNet [15] ECCV1$8 | 4.50 | 51.0
OR-CNN [37] ECCV18 | 410 | 45.0
RepLoss [37] CVPR18 | 4.00 | 41.8
AR-Ped [2] CVPR19 | 4.36 | 48.80
CSP [16] CVPR19 | 3.80 | 36.5
HGPD(Ours) - 483 | 36.33
HGPD*(Ours) - 3.78 | 32.26

method also runs at a speed of 12 FPS on Caltech and achieves a
real-time pedestrian detection.

5 CONCLUSION

In this work, we propose a hierarchical graph pedestrian detec-
tor to handle the occlusion issue, which contains intra- and inter-
proposal graphs. We employ semantic relationships to construct
intra-proposal graph, and it can effectively model occlusion patterns
and highlight features from visible regions. And the inter-proposal
graph can provide meaningful visual cues for proposals of occluded
pedestrians. Without extra visible box annotations, the proposed
framework achieves state-of-the-art performance on two widely
adopted pedestrian datasets, CityPersons and Caltech.
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